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Abstract

The decay of isotropic turbulence in a compressible flow is exanfined by direct nu-
merical simulation (DNS). A priors analyses of the DNS data are then performed to
evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): a gener-
alized Smagorinsky model (M1) [J. Fluid Mech., 238, 1 (1992)], a stress-similarity
model (M2) [J. Fluid Mech., 275, 83 (1994)], and a gradient model (M3) [Theoret.

' Comput. Fluid Dynamics, 8, 309 (1996)]. The models exploit one-parameter second--
or fourth-order filters of Pade type, which permit the cutoff wavenumber k. to be
tuned independently of the grid increment Az. The modeled (M) and exact (E) SGS-
stresses are compared component-wise by correlation coefficients of the form C(E, M)
computed over the entire three-dimensional fields. In general, M1 correlates poorly
against exact stresses (C' < 0.2), M3 correlates moderately well (C = 0.6), and M2
correlates remarkably well (0.8 < C < 1.0). Specifically, correlations C(E, M2) are
high provided the grid and test filters are of the same order. Moreover, the highest
correlations (C = 1.0) result whenever the grid and test filters are identical (in both
order and cutoff). Finally, present results reveal the ezact SGS stresses obtained by
grid filters of differing orders to be only moderately well correlated. Thus, in LES the
model should not be specified independently of the filter.
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1 Introduction

By definition, ‘direct numerical sxmulatx&n‘(DNS) is the numerical solution of the Navier-
Stokes equations without recourse to empirical models. In concept, the fluid motions are

resolved down to the Kt f

tov wavenumber ky, at: whach edd% succumb to viscous dissi-
pation. n general Ifﬁe eomputatxonal workload for fully-r ”bNS scales as Re3 where
Re is the Reynolds awmber. For the complex, hxgh—Reynoiﬁ-mnﬁer flows of engineering in-
terest, the computational requirements of DNS are staggering and prohibitive. Consequently,

large-eddy simulation (LES) remains an attractive (and necessary) alternative.

In contrast to- DNS, LES is.based.on a decomposition of the flow-field variables into

equations. mcorpom the subgnd—scale (SGS 0T Ty, Whi
tions between the smaller (k 2 k) and larger (k < k) scales eF motxon The larger scales
are resolved in space and time on a smb&ble cemfmtat.xonal gnd however, the SGS stresses

are modeled or othermse approxxma.ted

The relationship between DNS and (xde&iazed) LES is illustrated in Fig. 1, which presents
the Kolmogorov energy s|
energy decay at the rate- E'(k) k“/ 3, 8§§mphcat1m, Thi vanes with the cutoff k,; that is,

The inemal tange of the spectrum is characterized by

7 = Tui(ke). For DNS, k. = ky and, for all practical purposes, Tri(ky) = 0.

"A general criticism of LES (1] is that the truncation errors of the num’eriéii methiod often
contarmnate the SGS dissipation. There is growmg realization {eg » Vasilyev et al. [2]) that
tius sxtn&tlon can be avexéed by mdepmdent speeﬁeahoa Gf ehe grid resolut;oa Az‘ and the
" wavenumber cutoff k‘ (Thndﬁg;hout this work, asterisks deasts dimensional quantxﬁsf} In
our view, k; should be specified on the basis of physical considerations; that is, k; should he
in the inertial range of the Kolmogorov spectrum (Fig. 1). On the other hand, Az* should be
~ determined by numerical considerations; that is, by the grid resolution necessary to resolve

the smallest eddies (those of wavelength A} = 2r/k;) for the numerical scheme of choice.




For example, spectral, sixth-order, fourth-order, and second-order difference approximations
typically require 2, 10, 16, and 32 gridpoints, respectively, per wavelength of the smallest
resolved scale. If we define the dimensionless wavenumber o = k*Az®, then a. = k;Az"
defines the dimensionless filter cutoff. It is highly desirable, therefore, to exploit continuously
tunable filters, whose cutoffs a, are not “hard-wired” to the grid resolution. For this purpose,

we adapt one-parameter families of filters of Pade type; as described in Lele [3].

| Our present work parallels the experimental investigations of Liu et al. [4] and the
computational work of Vreman et al. [5]. Each paper evaluates the potentlal of candldate
SGS models by means of a priori analyses. (The latter work also performs a posteriori
analyses.) In their ground-breaking experiment, Liu et al. [4] mvestlgated the structure of
turbulence in the far field of an axisymmetric water jet by means of paxtlcle-dlsplacement
velocimetry. By planar filtering of the velocity daj:a, they reconstructed (2D slices) of three
components of the exact SGS-stress tensor and correlated various modeled stresses against
their exact counterparts. To our knowledge, their experiment represents the first a priori
analysis conducted with experimental rather than computational data. Two of the models
considered by Liu et al. [4] were the standard (incompressible) Smagorinsky model and
a stress-similarity model. In ‘Vreman et al. [5], three candidate SGS models (and their
dynamic counterparts) were evaluated by both ¢ priori and a posteriori analyses, using
data obtained by DNS of a weakly compressible turbulent mixing layer. Specifically, they

examined Smagorinsky, similarity, and gradient [6, 7] models.

In the present paper we evaluate, for the case of decaymg isotropic turbulence, the three
models considered by Vreman et al. [5]. Our evaluation is limited to a priori analysis only
and has a different focus than the work of Vreman_et al. [5]. Whereas, they exploit a top-hat
filter with a fixed filter width (twice the'grvid increrrrérlr;) and focus on the SGS models, we
exploit Pade-type filters and focus speciﬁéally on the effects of the filter. In particular, we
examine the effects of the cutoff and the order property of the filter on the fidelity of the

models.

The next section discusses our two candidate filters: second- and fourth-order filters of



Pade type with continuous variation of the cutoff .. In Section 3, we present the unfiltered
and filtered compressible Navier-Stokes equations, which serve as the governing systems for
DNS and LES, respectively. Section 4 describes the three SGS models to be considered:
the generalized Smagorinsky model of Erlebacher et al. [8], the stress-similarity model of
Liu et al. [4], and the generalized: Clark model of Vreman et al. [7]. Section 5 presents
parameters of the test flow: degaying isotropic turbulence. The a priori analysis is presented
in Sectten 6. In partlcular, we present correlations between the exact SGS-stress components
and thelr modeled counterparts A bnef dlscussmn of the results is presented in Section 7,

and conclusmns are offered in Sectlon 8.

2 One-Parameter, LowPass Fiters

Many types of spatial, hnear, low-pass ﬁlters can be uwd for LES, the most popular being
_Atop-hat Gaussian, and spectral ﬁlters The propertles Qf admlssxble filters can be found in

many sources, including Erlebacher et al [8]

Following Lele (3], we consider one-parameter families of filters of Pade type that are beth
symmetric and positive semidefinite. The positivity of these filters ensures that the SGS-
stress tensor is realizable in the sense of Vreman et al. [9].. A filter is best understood in terms
of its transfer function, which depicts its effect on modes of wavenumber a. The transfer
functions of a family of second-order-Pade filters are shown in-Fig. 2 for.selected values
of the cutoff Qe The dlss1patlon 1mposed by the filter varies contmuously over the range
0<a.<m, decreasmg thh increasing «a. Specxﬁcally e = 7 turns off the filter, a, = 7/2
results in the dlscrete top-hat filter (w1th weights at adjacent nodes of [1/ 4, 1 / 2 1/4)), and

= 0 results in extreme dlsmpatxon In general one-parameter ﬁlters are advantageous
relative to ﬁxed-wxdth ﬁlters in that o, can be ad,)usted 50 as to specxfy k. mdependently of
Az. For some purposes, we w111 also exploit a one—parameter, fourth-order Pade ﬁlter w1th

the same parameter range. Details of the both filters are relegated to the Appendix.

For our present purposes, multidimensional ﬁlte:iag is accomplished by filtering succes-




sively in each coordinate dimension. The same cutoff is exploited in each dimension.

3 Governing Equations

For DNS, the Navier-Stokes equations are solved numerically on a grid sufficiently fine to

resolve all energetic scales of motion.

3.1 Compressible Navier-Stokes Equations

In tensor notation, the dimensionless equations governing the evolution of an ideal gas in

'time t and Cartesian space x = [z, Z2, T3] are

ot aa:,,
O(pur) , Opwmw) _ _Op 1 0om
ot + 0z, T Oz + Re 91, (1)
3(ET) + 6[(ET +p)uk] _ Q_’_lf " .l_a(ugcsz)
ot Bxk 6::,; Re 3.7:;;
where
Er = ple+ _“12‘2)
T
¢ v(y - 1)M? ®
Iy aT
hy =

(7’7—v 1)M2PrRe Oz

and repeated indices imply summation. Hel;e, p, p, T, e, Er, u, and & are density, ther-
modynamic pressure, absolute tempegattire:,_éﬂeéiﬁc internal energy, total energy, dynamic
viscosity, and thermal conductivity, respectively, apd u = [u1,ug,us] is the velocity vec-
tor. The quantities above have been rendjered ‘dinmensionlogss‘ by the choice of a refer-

ence length scale L* and suitable reference ;ralues (denoted by subscript “r’) as follows:



= t'up/L* T, = z;/L°

¢
T =TTy ue = upfup

p = p'/ot - p = (et 3)
p = p'/u(Ty) k = &'/"(TY)

e = e'fup? g E, = E;/(pruf

From the nondimensionalizations above, four dimensionless parameters arise: the Reynolds
number, the Mach number, the Prandtl number, and the ratio of specific heats. These are

defined, respectively, as follows: ~*'*'"

- Re = PruL

r
M = v 1“"]? 17 - @
Pr = gé-;—- o
: Kr .
8 c
- P
v Cs

Here, C; and C; are the specific heats at constant pressure and constant volume, respectively,
and R* is the ideal gas constant. Throughout this work, we presume the constant values

v = 1.4 and Pr = 0.7. The viscous stress tensor oy is defined
2
okt = 2uSk — §MD¢5M 6))

where §,; is the Kronecker delta, D = %: is the compressible dilatation, and Sy, is the

symmetric strain-rate tensor defined as

1/{0u, Oy - -
Su=§(-é;l-+-éx—k) (6)

Equations 1 describe the conservation of mass, momentum, and energy, resf:éétively. The

governing system is closed by imposing an equation of state for an ideal gas, namely
N B pT B R
=M (v—=1)pe (7

The variation of u with respect to T is modeled by Sutherland’s law, and s = u/Pr.




3.2 Favre-Filtered Navier-Stokes Equations

For LES of compressible flow, density-weighted (Favre) filtering arises naturally from the
use of conservative variables. For example, the Favre-filtered velocity components, denoted

by tildes, are given by

U =

1 |;§|

(Pix = Pm) N )

The Favre-filtered continuity equation is form invariant; that is,

0p | 9(pix) - S
p + o 0 9)

as is the filtered equation of state § = pT'/(yM?). However, the momentum equation acquires
‘the following filtered form:

8(pty) , O(pii) _ 0P . 1 06w , O 0

ot oz,  Ozx  Redzn = Oz

where 7y is the SGS-stress (or the residual-stress) tensor. For compressible flow, the residual-
stress tensor assumes the form

Tt = P(Uetly — Urthy) (11)

As written, Eq. 10 is exact; however, in practice it becomes inexact because &y, being
unavailable, is usually approximated from Su and i, with residual stresses due to their
nonlinear interactions being neglected. Following Erlebacher et al. [8], an alternate form of

the dimensionless grid-filtered energy equation is

op  O(pix) _ _ = 1a4 8 y=1 1 8Qc
ot * oz, (y=1)pD + M?2PrRe 0z “axk t+ Re ¢+ yM? oz, (12)
where the dissipation function is
® = 2uSu o, 73#D o (13)
and the residual heat-flux vector is
Qk = AT — weT) (14)
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Equation 12 is inexact because it has:béen derived by neglecting certain pressure-velocity '
terms, and because, in practice, the term p%‘ is typically approximated from the resolved

scales.

4 Subgrid-Scale Stress (SGS) Models

We consider three residual-stress models, denoted M1, M2, and M3, as described, respec-

tively, below.

4.1 Generalized Smagorinsky Model (M1)

‘A generalization of the Smagorinsky model to compressible:flow is:presented:in Erlebacher
et al. [8], which we adapt as follows. Let MRy denote the modeled residual-stress tensor
such that 7 7

MRy = pr(Su - %ﬁﬁt) (15)

where 5y, is the resolved-scale strain-rate tensor, and i is the eddy viscosity defined as
pr = 2CrA?p|5| HE IS'I = SuSu (16)

Here, Cr is a model copstant, and A is a characteristic length scale related to the grid spacing.
Typically A = VAz?+Ay? + Az?. Similarly, the modeled residual heat-flux vector MQ\

is given by

, 0T
MQ; =ECqA.*;2 ﬁlSI'a-:;; : , : (17)

where C, is a model constant related to Cr through the turbulent Prandtl number Prr.

4.2 Scale-Similarity Model (M2)

On the basis of their experimental observations, Liu et al. [4] propose (for incompressible

flow) the simple stress-similarity model

T~ Ly (18)




where ¢, is a constant, and Ly is the resolved-turbulent-stress tensor. A computable quan-
tity, Ly is extracted from the resolved fields by applying a second filter, termed the test filter
and denoted by a hat.: Specifically,

Ly = Tty - T - (19

In general, the cutoffs associated with the grid and test filters may be different. Bardina’s
[10] model is the special case of Eq. 18 for which ¢z =1 and r = 1, where r = A/A, and A
and A are the filter widths associated with the test and grid filters, respectively.

For compressible flows, attempts to distinguish Favre grid- and test-filtered quantities
result in cumbersome notation. Therefore, we adopt the simplifying convention that, for any
twice-filtered quantity, the first and second filtering operations are presumed to correspond
to the test and grid filters, respectively, which may have different cutoffs. Following this

convention, the resolved-turbulent-stress tensor is
Ekl (u,,u, - uku,) (20)

and its thermal counterpart is
g = BT — @T) (21)

4.3 Generalized Clark Model (M3)

Using Taylor-series expansions of the ﬁltered veloc1ty ﬁelds in terms of the unﬁltered veloc-

ities, Vreman et al. [7] derive the gradxent model

T = —-——A"’ Q“—'ii"ﬂ+0(A4) o (22)
0z; Oz;

(The negative sign is incldded for consistédcy with our definition of the residual stress
(Eq. 11)). Their model generahzes that of Clark et al. [6] to compre551ble flows. Crit-
icism of the use of Taylor expansions by Love [11] has been addressed in Vreman et al.
[7]. Here, our purpose is not to defend or refute the Taylor-serxes approach, but simply to

evaluate the proposed model by a priori analysxs

9



-5 Test Case: Decaying Isotropic Turbulence

We consider the decay of an isotropic turbulent compressible flow. Specifically, the test case
corresponds approximately to case ife96 of Blaisdell et al. [12], whose parameter values are

restated below for completeness.

Re = 166.
M=10 | (23)
T, = 300K
where
or = Po

P = =BT (24)

0

£
I
£

Ly
I
3|

and the subscript “0” refers to spatially a.vera.ged values at the initial time. For reasons of
computational efficiency, the computational domain is a cube of edge length 27, with periodic
boundary conditions in each coordinate dimension. The flow is initialized with the top-hat
energy spectrum shown by solid line in Fig. 3, for whlch the phases are prescnbed randomly
Whereas Blaisdell et al. [12] exploits a power Iaw’ for the vlscosxty model as ‘mentioned
prevxously, we employ Sutherland’s law As a consequence, some of our initial parameters
differ marginally from those pubhshed in Blaisdell et al. [12]. The initial turbulent Mach
number M; = \/ < uguy >/ \/'y <p>/<p>=0 7 Here, angle brackets denote volume

averages over the entire domain (e.g., < u >= I"——), and uf = wy— < py > / <
p>. (Throughout this work, volume avel'ages are computed by multidimensional trapezoid
rule, which is spectrally accurate whenever the ﬁelds are spatla.lly penodlc) The flow is
then allowed to evolve without further forcing. The temporal evolution of total kinetic
energy TKE = 0.5 < pujug > and turbulent Mach number VMg e,re shown in Figs. 4 and 5,

respectively. Enei'gy spectra E(k) at selected times are comparedrxivith the initial spectrum

10




in Fig. 3. Here, k = |k| = \/k% + k3 + k3, where k = [ky, k3, k3] is the wavenumber vector in

Fourier space.

6 DNS: A Priori Testing

The governing equations (Eq. 1) are solved by efficient pseudospectral methods using the
algorithm developed by Obrist [13] for his Diploma thesis at ETH under the direction of
the second author. The uniformly-spaced computational grid uses 96 points (48 Fourier
modes) in each coordinate dimension. Because the flow is well resolved at the 963 resolution
for the particular parameter values of interest, no explicit dealiasing is necessary (nor is it
desirable). Time is advahced fully explicitly by the third-order low-storage Runge-Kutta
method of Williamson [14].

As noted in Blaisdell et al. [12], the Reynolds number of the simulation is insufficiently
high to result in a distinct inertial subrange with a characteristic -5/3 power-law decay. The
temporal evolution of the spectrum of the présént simulation is shown in Fig. 3. All analyses
are performed at dimensionless time ¢ = 1.51. For completeness, Figs. 6, 7, and 8 show the
temporal evolution of the turbulent Reynolds pumber Rer, the Taylor microscale A;;, and

the Taylor microscale Reynolds number Re,, which are defined, respectively, as follows:

ReS puguy >2

RCT = ~
. o L€l
~ _ <pu>
1 ol
€ = R: < O’,'j'é; >
K U >
A2 -k h' k . (26)
kl < (%3)2 >
Rey = Re<p>giuji T (27)
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Table 1:77Taylor-migrqs;<ga,.ler components at di;@engiogess_tirme t - 1.51.

[< puiu >] v

<p> |
Note that ¢ is a turbulent velocity scale, for which TKE = ¢?/2, and that ¢ is the turbulent
dissipation rate. Like Blaisdell et al. [12] we observe two distinct microscales. The diagonal
components of Aw are consistent as are the off-diagonal components, as shown in Table 1. In
general, the diagonal components are larger by 20-40 percent. Also as observed by Blaisdell
et al. [12], the microscale diminishes at first.and then grows gradually. For comparisons with
-the results of Blaisdell et al. [12], for which time is typically given in units teg/(TK E)o, we

note that our dimensionlessv time should be scaled by a factor of approximately, two.

Fig. 9 presents contours of constant 71, in an arbitr_a;ily selected z — y plane that corre-
sponds to z = 0.6545. The residual-stress cron:iponentris computed exactly by grid-filtering
the DNS results according to Eq. 11. Fig. 9 further compares the exact residual stress com-
ponent with contours of the corresponding components of the Smagorinsky (M1, Eq. 15),
similarity (M2, Eq. 18), and generalized Clark models (M3, Eq. 22), respectively. For M2,
which requires twice filtered quantities, the cutoff values for the grid and test filters are
a, = m/2 and a, = 0.93, respectively. Fig. 9 clearly reveals model M2 to be much more
highly correlated to the exact residual stress (E) than either M1 or M3.

The numerical values of these correlations are summarized in Table 2 for all components

of 7. In particular, Table 2 presents correlations of the form C(E, M) between the exact

12




=

[(1.91,x/2) [ C(E,M1) [ C(E, M2) | C(E, M3)
™ 0.066 0.977 | 0.619
Ti2 0.182 0.975 0.650
T3 0.125 0.978 0.546
Tog 0.081 0.976 0.609
Taz 0.113 0.978 0.540
Ts3 — 0.214 0.980 0.412
(r/2,0.93) [ C(E, M1) | C(E,M2) [ C(E, M3) |
i1 0.067 0.910 0.474
Tig 0.183 0.906 0.518
Ti3 0.116 0.913 0.432
Tag 0.082 0.908 0.461
723 0.102 0.913 0.427
Ta3 0.199 0.921 0.314

Table 2: Correlations between exact (E) residual-stress fields 74; and their modeled (M)
counterparts, for case of differing grid and test filters, whose respective parameters o, are
provided in upper left box of each block.

(E) and modeled (M) residual-stress fields for the three models under consideration. Here,
we define the correlation coefficient C between any two fields u and v in the customary way

as follows:
uww>—-<u><Lv>

[(<u?> - <u>?)(<v?> - <v>2)/2

C(u,v) = (28)

In general, we observe poor correlations (typically C < 0.2) for M1, moderately high corre-
lations (C =~ 0.6) for M3, and remarkably high correlations (C > 0.9) for M3. Two filtering
operations are required to evaluate M2. Thus, the two values that appear in the upper left
box of each block of Table 2 correspond to the respective cutoff values for the grid and test

filters.

Fig. 10 and Table 3 present similar results for the residual-stress components Q; (Eq. 14)
with their modeled (M1,M2) counterparts MQy (Eq. 17) and ¢x (Eq. 21), respectively. The
same levels of correlations observed for components of the SGS-stress tensor are observed

also for the thermal stresses.

It is well known that scalar eddy viscosity models (e.g., M1) do not perform well in
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(1.91,7/2) [ C(E,M1) [ C(E, M2)
Q. 0.106 |  0.977
Q- 0.109 0.976
Qs 0.236 0.974
(/2,0.93) | C(E, M1) [ C(E, M?) |
Q. 0.104 0.912
Q- 0.110 0.911
Qs 0.213 0.912

Table 3: Correlations between exact (E) energy residual fields Q, and their modeled (M)
counterparts, for case of differing grid and test filters, whose respective parameters . are
provided in upper left box of each block.

anisotropic flows (e.g., Compton and Eaton [15]) because the shear stress and the mean
strain are misaligned. However, the component-wise variation of the correlations C(E, M1)
in Tables 2 and 3 comes initially as a surprise. For isotropic turbulence, one expects the
correlations to be nearly the same across all components. Statistical isotropy, however, does
not imply instantaneous isotropy. Numerical experimentation with different random initial
conditions and a priori analyses at different snapshots in time reveal these variations to be
manifestations of instantaneous anisotropy. On the other fland, the similarity model (M2)

appears relatively insensitive to anisotropy.

Liu et al. [4] found Bardina’s [10] model to yield the highest correlation coefficients.
Accordingly, Fig. 11 presents contours of the exact (E) and similarity (M2) modeled (2,3)
components of the residual-stress tensor for the case in which the grid and test filters are
identical, each with o, = 7/2. In this case, the correlation C(E, M2) attains a surprisingly
high value, in excess of 0.99. Table 4 below summarizes the correlation data for various values
of the cutoff a,, which is given in the upper left box of each block in the table. The correlation
coefficients of the form C(E, M2) range from a low of 0.86, for an extremely dissipative filter,
to 0.999, for a very mild filter. As expected, the less dissipative the filter (i.e., the higher
k), the higher the correlation coefficient. In addition to correlation coefficients, Table 4
also indicates the ranges (maxima and minima) of the exacf. and modeled residual stresses.

From these extrema, we make two important observations. First, the magnitudes of the

14



components of the ezact résidual-stréss tensor T depend significantly on the value of the
cutoff a.. Second, whenever identical grid and test filters are exploited Tkt is apparently well
approximated by Eq. 18 with ¢, =~ 1.0, prowded the ﬁlter is not too dissipative. Tables 2
and 4 reveal that the fidelity of all three models appears to deteriorate as the filter becomes
highly dissipative (although the correlations for M1 are so poor that any effect due to filter

tuning is difficult to assess).

To- provide additional insight, Table 5 presents correlations of the form C(E, M) for the
case where the grid filter is of fourth order, as dlscussedm_Section 2. For M? the test ﬁlter is
of second order, so that the grid and test filters are of d1fferni§ orders. The values shown in the
upper left box of each block of Table 5 correspond to the cutoff: values o, for the grid and test
filters, respectively. In general, component-wise correlations for the generalized Smagorinsky
model appear to drop below their previously low values, as suggested by a comparison of
Tables 2 and 5. Moreover, correlations of the type C(E, M2) drop dramatically to range
from 0.5 to 0.7 depending upon the values of the grid- and test-filter cutoffs. The poorest
correlations for M2 arise when the respective cutoffs are different. Curiously, M3 correlates
as well or better for a fourth-order grid filter as it did for a second-order grid filter. This

may suggest that the fourth-order term in Eq. 22 is significant.

- Finally, we consider the effect of the order property of the grid filter on the ezact residual-
stress tensor. Figure 12 compares the exact (2,2) component of 7y for grid filters of different
orders and cutoffs. The first grid filter is of second order with o, = 1.16; the second
is of fourth order with a. = 1.71. Contours are displayed at z = 0.6545. Clearly, the
stress distribution is grid-filter dependent. -To quantify this dependence, Table 6 presents
correlation coefficients of the form C(E2, E4), where E2 and E4 refer to exact quantities
computed by second- and fourth-order grid filtering, respectively. All components show the
same level of correlation, nominally 0.54. We conclude that the exact residual stresses depend

on the selection of the grid filter in both their distribution and their scale.
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- ~ 0.997 | 0.112E-02 | -.654E-02 [ 0.896E-03 | -.572E-02
Ti2 - 0.997 | 0.315E-02 | -.288E-02 | 0.271E-02 | -.247E-02
i 0.997 | 0.348E-02 | -.291E-02 | 0.298E-02 | -.246E-02
T2 0.997 | 0.954E-03 | -.728E-02 | 0.782E-03 | -.614E-02
To3 70.997 | 0.270E-02 |-.225E-02 | 0.240E-02 | -.200E-02
Ta3 0.997 | 0.613E-03 | -.583E-02 | 0.433E-03 | -.489E-02
o. =7/2 | C(E, M2) Emax.|  Epi M2max | M25in |
- 0.992 0.00 | -, 161E-01 ]  0.00 | -.125E-01
Ti2 0.992 | 0.772E-02 | -,648E-02 | 0.620E-02 | -.512E-02
T3 0.993 | 0.847E-02 | -.621E-02 | 0.653E-02 | -.469E-02
Tog ~ 0.992 0.00 | ~.167E-01 0.00 | -.122E-01
To3 ~0.993 | 0.664E-02 |~.560E-02 | 0.516E-02 | -.432E-02
a3 0.994 0.00 |~.138E-01 0.00 | -.107E-01
| C(E.M2)]  Emax|  Fpip | M2max ;

™ 0.970 0.00{ -.315E-0 0.00 [ -.188E-0
Ti2 0.969 | 0.151E-01 | -.130E-01 | 0.890E-02 | -.854E-02
Ti3 0.975 | 0.168E-01 | -.105E-01 | 0.105E-01 | -.666E-02
Too 0.968 0.00 | -.298E-01 0.00 | -.210E-01
T2s 0.975 | 0.133E-01'| ~.101E-01 | 0.900E-02 | -.624E-02
33 0978 0.00 | -.270E-01 0.00 | -.162E-01
o, = 0.45 | C(E, M?2) max: | Pmin | M2max | M2
- 0.861 ~0.00'+~.445E-01 0.0 | -.186E-01
Ti2 0.872 | 0.217E-01 | -201E-01 | 0.101E-01 | -.911E-02
Ti3 0.887 01 -1 0.138E-01 | -.109E-01
Taz 0.865 0.00 | -.285E-01
T2 0.890 0.974E-02 | -.888E-02
Ts3 0.901 0.00 | -.226E-01

Table 4: Correlations between exact (E) nesidual fields 74 and their similarity modeled (M?2)
counterparts, and maximum and minimum values of E and M2 fields, for case of identical
grid and test filters, whose parameter o, is provided in upper left box of each block.
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Table 5: Correlations between exact (E) residualfields and their modeled (M) counterparts,
for case with fourth-order grid filter and second-order test filter, whose respective cutoffs o,
are provided in upper left box of each block.
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(1.16,1.71) | C(E?2, E4)
11 0.548
T12 0.548
713 0.536
T2 0.546
T23 0.538
T33 0.544
(o)) 0.537
Q: 0.539
Qs 0.535

Table 6: Correlations between exact residual-stress components computed by second-order
(E2) and fourth-order (E4) grid filtering, whose respective cutoffs o, are given at upper left.

7 Discussion

In the conventional practice of LES, the grid filter and the SGS-model have often been
treated as if they wete independent choices (as observed by Piomelli et al. {16]). In contrast,
a priori analyses with a continuously tunable filter reveal that the filter, the exact SGS
stresses, and the model are closely interrelated. Thus, the filter and the model should not

be specified independently.

For reasons of pracncahty, our computatxonal study was hmlted to a single test flow at
a relatlvely low Re,, much lower, for exa.mple, than the value Re,\ = 310 in the expenment
of Liu et al. [4). It is natural to wonder 1f the high correlations observed for the stress-
similarity model (M2) generahze to other ﬁows and to higher Re,. Several considerations
suggest an aﬁitmatlve answer. First, correlatlons of 0.85 were observed for M2 in the phys-
ical experiment of Liu et al. (4] whenever 1dent1cal second-order grid and test filters were
exploited. Second, by comparing Fig. 8 and Table 7 below, one observes some dependence of
the correlation coefficient on Re,, but it appears to be relatively weak. Third, with identical
second-order Pade grid and test filters eéach of o, = 7/2, Adams et al. [17] have recently
observed correlations well in excess of 0.90 for DNS of a forced turbulent Mach 3.0 boundary-

layer flow along a compression ramp, for whick ‘Re, grows from a value of 47 in the incoming
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t_|C(E,M?2)]
127 0.966
287 0971
644 0.978
.829 0.982
977 0.985
1.08 0.987
1.18 0.988
1.24 0.989 |
1.40 0.991 |-
1.51 0.992

Table 7: Time evolution of correlation coefficients of the form C(ryy, L11) for identical grid
and test filters with a, = 7/2.

boundary layer to 326 midway up the compression ramp. Moreover, even with a much more
dissipative filter (a. = 0.53), correlations on the order 0.8 are observed. It is important to
note that, in contrast. to the present test case, lhe flow considered by Adams et al. is highly
anisotropic, highly compressible, and wall-bounded.

8 Conclusions

The decay of 1sotrop1c turbulence in a compreemble ﬁow is exammed by dxrect ‘numerical
sunulatlon (DNS) A pnors analyses of the DNS data are then performed to evaluate three
candidate subgnd-sca.le stress (SGS) models for large-eddy mmulatlons (LES) the generahzed
(compresmble) Smagormsky model (M 1) of Erlebacher et al 8], the stress-mmxlanty model
(M2) of Liu et al. [4], and the generehzed Clark model (M 3) of Vreman et al. [7]

The focus of the study is an examination of the effect of the grid and; test filters on the
fidelity of the models. For this purpose, tunable, one-parameter filters of Pade type are
exploited. Tunable filters are desirable for LES in that they allow the cutoff wavenumber
k. to be specified independently of the grid resolution Az. In our view, the cutoff should
be selected on the basis of physical considerations and the grid resolution on the basis of

mathematical ones.
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In the a priori analyses, the modeled residual stresses are torrelated against their exact
counterparts for selected values of the cutoff wavenumber k. of the filter. On the basis of

these results, the following conclusions are offered:

1. The distribution and the scale of the exact residual-stress tensor 74 depends strongly on
both the cutoff k. and the order property of the grid filter. This dependence is partially

~ revealed by the simple recognition that the residual stresses must vanish entirely in the
limit as k. — k,, where k, is the Kolomogorov wavenumber. Consequently, in general,
no SGS-stress model can be independent of the grid filter. In particular, there is no
universal Smagorinsky constant; the constant necessarily depends of the character of

the grid filter.

2. Correlations of the form C(E, M) between the exact (E) and modeled (M) SGS stresses
are typically very high (C' > 0.9) for the stress-similarity model (M2), moderately good
(C = 0.6) for the Clark model (M3), and poor (C < 0.2) for the Smagorinsky ‘model
(M1).

3. For each of the three models, higher correlations C(E, M) are observed for less dissi-
pative grid filters and vice versa. This is an expected result because (for a fixed grid
resolution) dissipative filters are characterized by relatively low cutoff wavenumbers &,

which in turn results in more energetic subgrid scales of motion.

4. Model M2 performs remarkably well in a priori tests provided the grid and test filters
have the same order property. The highest correlations, well in excess of 0.90, are
obtained for M2 whenever the grid and test filters are identical. If the grid and test
filters are identical and the filters are not too dissipative, model M2 appears to capture
not only the correct distribution of stress but also the correct amplitude whenever the
model constant ¢; = 1.0. This result numerically replicates Bardina’s [10] result, albeit

for compressible flow.

5. The present results for models M1 and M2 are consistent with the experimental find-

ings of Liu et al. [4], who did not consider M3.

20



6. Whereas models M1-and M3 appear to degrade whenever the flow is instantaneously

anisotropic, model M2 appears relatively insensitive to anisotropy.

As a concluding thought, we acknowledge the well-known experience that both Bardina’s
model (e.g., Liu et al. [4]) and Clark's model (Vreman et al. [5]) are insufficiently dissipative
for practical applications to LES. However, in our view, the physics and the mathematics
of LES need decoupling.- It appears increasing likely that stress-similarity models (M2, for
example) capture the physics (e.g., backscatter) with high fidelity. That such models “blow
up” in practice is not surprising in light of Fig. 1. The physical viscosity, which dampens
the highest wavenumbers in DNS, is ineffective in LES at the cutoff wavenumber k.. We

conclude that the instability of similarity models is ultimately a mathematical issue, not a
physical one.
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Appendix: One-Parameter Pade Filters

Let f be a vector containing n + 1 values f; = f(z;) obtained by sampling a continuous
function f(z) at a set of eqﬁally spaced nodes z; = 7o + 1Az, i = 0,1,...,n. Further let
f = Lf denote the vector of filtered values obtained by applying the linear filter L to f.
Here, we consider Pade filters, for which L = M -1E, whereby Mf = Ef, and M and E are

banded matrices.

Second-Order Pade Filters

Following Lele [3], a second-order, one-parameter (¢) Pade filter is constructed by considering

the symmetric pointwise scheme
- - - b .
Cfimnt fit(finn=afi+ 5(fi-1 +fi) 3 ((=12,.n-1) (29)

Various treatments are possible for the boundary nodes ¢ = 0 and i = n. However, the sim-
plest approach, sufficient for our present purposes, is to irnpose no filtering at the boundaries.

For the second-order Pade scheme, M and E are tridiagonal matrices.

It is instructive consider the action of the filter of Eq. 29 on the single Fourier mode
exp(tkz) (¢ = v/-1), from which we obtain the complex transfer function

_ a+bcos(a)
(@) = T3¢ cosla)

where a = kAz. For a fixed grid increment Az, the transfer function defines the action of

(30)

the filter on modes of wavenumber k. For applications to LES, we consider only low-pass
filters, for which H(0) =1 and H(r) = 0. In combination, these two constraints imply that
b=a = 0.5+ ¢. Admissible values of the parameter are —% <(< % Whenever ¢ = 0,
M is the identity‘matrix, and the filter is said to be fully explicit. The fully explicit case
corresponds to a discrete top-hat filter with weights at adjacent nodes of [1/4, 1/2, 1/4].
Otherwise, the filter is implicit. The value { = % yields M = E, which turns off the filter.
For all admissible parameter values, the matrices M and F are diagonally dominant with

positive diagonal elements, in which case the operator L is positive semidefinite.
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By analogy to discrete differentiation’ operators, to each discrete filter is associated a

Taylor-series expansion of the form
flzi) = f(z:) + alA:rf'(;é;)r+ ;877 " (z;) -IG-_.aa_Azaf”'(z;) +... (31)

Here, for notational simplicity, the factoriils in the Taylor expansion have been absorbed
into the coefficients a;. By applying the Taylor-series representation of the filter to exp(ckz;),

we obtain the corresponding Taylor series of the transfer function, namely
H(e) = l+aua—a0’ —aue’+.. : - (32)

Equating successive derivatives of the two forms of the transfer function (Egs. 30 and 32) at
a = 0, yields the coefficients a; of the transfer function. Thus, the Taylor-series expansion
of the filter implies the transfer function and vice versa. For the Pade filter of interest, the

first two coefficients are

H(©0) =0
20, = H'0)= -7+  (33)

a

In general, a filter is said to be of order m if the first non-vanishing coefficient of its
Taylor-series expansion is a,,. Thus, the Pade scheme is of second order (provided ¢ # 0.5).
Equivalently, a filter is of order m if all derivatives of the transfer function of order less than
m vanish at the origin. In general, filters associated with symmetric stencils (and coefficients)
are of even order with purely real transfer functions. As a conseqﬁence, they filter without

phase error.

As clearly indicated by Eq. 33, the coefficients of the Taylor-series expansions Eq. 31 and
Eq. 32 are functions of the parameter. To quantify this dependence, we define a., the cutoff

wavenumber, such that ,
(1+2¢)(1 +cosax)
2(1+2cosa,)

where 0 < C < 1 but is otherwise arbitrary. (In signal processing, it is customary to define
the cutoff such that 1/2 = |H(a)|?.) Eq. 34 relates the original parameter { to the cutoff

C=Ha) =

(34)
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wavenumber 0 < a, < 7. The (unconventional) choice C = 1 /2 yields the particularly useful
relationship 2¢ = - cos(a,), which in turn yields

1-cosag)(l +cosa)
2(1 — cos a, cos @)

H(a,o.) = ( (35)

Fig. 2 in Section 3 compares the transfer functions of the variable Pade filter for selected

values of the cutoff a..

Fourth-Order Pade Filters

We adapt the three-parameter, symmetric, fourth-order filter of Lele [3] whose M and E
matrices are penta- and hepta-diagonal, respectively. The pointwise scheme for nodes i =

2,3,..,n—2is

ﬂﬂ-z+(ﬁ-1+ﬁ+(ﬁ+1+ﬁﬂ‘+z+ = afi+‘g'(fi—1+fi+1)+%(fi—2+fi+2)+g(fi-3+fi+3) (36)

where

a = +(5+6¢—60+16d)/8
b o= +(1+20+26-2d)/2 (37)
¢ = —(1-2 148 +16d)/8

(38)

By enforcing ¢ = d = 0, one arrives at a onépérameter, fourth-order filter whose matrices
M and E are penta-diagonal and tridiagonal, respectively, and for which 8 = (1 — 2¢)/14.
The stencil is closed by imposing no filtering at the boundaries and by using the explicit

fourth-order formula below at the gridpoint adjacent to the boundary point.

fom ght 5o+ 6k -4+ 1) (39)

An analogous formula is used at gridpoint n — 1. Admissible values of the parameter are
-2 < ¢ < i (Gerschgorin's theorem guarantees positivity only for —3 < ¢ < }.) A
linear relationship between the original parameter ¢ and —1 < cos(a.) < 1 establishes

12¢ = —[1 + 7 cos(cx)], which defines the cutoff wavenumber o in terms of ¢.
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Figure 2: Transfer function of one-parameter family of second-order low-pass filters of Pade
type for selected values of dimensionless cutoff wavenumber a..
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respectively.
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Figure 11: Contours of exact (E) and ‘modeled (M) 7,3 component of residual stress in
selected = — y plane at ¢ = 1.5, for identical grid and test filters-of cutoff values a, = 7/2.
For ranges of E and M2 values, see Table 4. |
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Figure 12: Comparison of exact (E) residual-stress component 72, for grid filters of second
(E2) and fourth (E4) order.
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